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MLP Briefing

Theoretical basis: Universal approximation theorem

Given any continuous function there exists a neural network that approximates said function according to set

criteria (as accurately as one desires). Perceptrons apply linear transformations onto inputs and then apply

some non-linearity. Weights and biases are the learned parameters.
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MLP Briefing

Now let’s just multiply the perceptron arbitrary number of times and we get an MLP!
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MLP Briefing

Importance of MLPs:

• Tranformers (LLMs, ViTs)

• Reward models (alignment of LLMs)

• Reinforcement learning (decision networks)

• Many, many more...

Llama2 source code
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KANs

Theoretical basis: Kolmogorov-Arnold representation theorem

Any multivariate continuous function can be expressed as a finite composition of univariate functions and the

operation of addition (the only true multivariate function is addition). This means that KANs instead of learning just

weights they actually learn univariate functions.

𝑛 = 2

only 2 layers

node
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KANs

KANs have been studied before in context of machine learning. There are a number of works that researched

their capabilities and limitations.

Problem with past KANs:

Main limitation was their architecture, as it conformed to the original formulation of the KA theorem. Only networks

of depth 2 and width of 2n+1 were studied.

Such small and shallow architectures couldn’t approximate multivariate functions using only smooth

univariate functions. Sometimes the functions had to be non-smooth or even fractal. This lead to

abandonment of the KAN idea initially.
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KANs

The main contribution of the recent paper is the extension of this theorem to arbitrary widths and depths of

networks, allowing for deeper and more complex architectures. Making the network bigger allows for the

representation through smooth and continuous functions only.

They simply define what a KAN layer is and stack them together. A shape of KAN is represented by an integer 

array:

Where 𝒏𝑳 is the number of nodes in 𝑳-th layer. The number of activation functions between layers with 𝒏𝑳 and 𝒏𝑳-𝟏 

number of nodes is always 𝒏𝑳𝒏𝑳-𝟏.
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KANs

Structure notation of KANs with examples

[2, 3, 3, 1] KAN [3, 2, 2, 2] KAN

Input Input
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KANs

How do KANs learn?

The authors employed B-splines as their method of function parametrization. Splines are just linear combinations 

of polynomial functions fitted to corresponding knot points. Activation functions in KANs are defined as follows:

𝒘𝒃, 𝒘𝒔, 𝒄𝒊  and spline parameters are learnable!

basis function
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KAN’s sparsity enforcement

Similarly to MLPs – KANs can be regularized during training to enforce sparse representations. In MLPs L1 

regularization applied to weights is used for that purpose. For KANs L1 is too weak, and additional entropy 

regularization is used.

KAN loss function with sparsity enforcement
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KAN’s properties

Using simple and different functions to approximate complex relationships allows for easier understanding of the 

network decision making process. The functions allow for local explainability (output dependence on variable) as 

well as compositional explainability (how variables influence each other).

• High parameter efficiency (lower memory requirements)

• High accuracy

• Extreme interpretability

• Accuracy / simplicity trade-off

• The same architecture can be reparametrized differently (spline grids) and retrained
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KAN’s properties

Parameter efficiency

For the same structure KANs have more parameters than MLPs, meaning they are less parameter efficient in 

terms of their structure. Typically though, much smaller KANs are needed to achieve the same or higher accuracy 

for the same tasks as MLPs.

Signature classification
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KAN’s properties

Interpretability

Novel approach to problem solving which automatically offers extreme interpretability out of the box. KANs are 

expected to be the most useful for natural sciences, where most representations are expected to be sparse 

compositionally and smooth. Interpretability / accuracy trade-off can be made, favouring simple architectures with 

very few activation functions.

Symbolic regression can be extremely helpful in obtaining accurate relationships.
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Symbolic regression with KANs



16

PyKAN

The authors prepared a Python package with KAN building, visualization and training tools:

https://pypi.org/project/pykan/

Their repository:

https://github.com/KindXiaoming/pykan

https://pypi.org/project/pykan/
https://github.com/KindXiaoming/pykan
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Sources

[1]. KAN: Kolmogorov-Arnold Networks, https://arxiv.org/abs/2404.19756v3
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